Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Effect of molecular size on the ability of zwitterionic polysaccharides to stimulate cellular immunity.

Journal of Immunology 2000 January 16
The large-molecular-sized zwitterionic capsular polysaccharide of the anaerobe Bacteroides fragilis NCTC 9343, designated polysaccharide (PS) A, stimulates T cell proliferation in vitro and induces T cell-dependent protection against abscess formation in vivo. In the present study, we utilized a modification of a recently developed ozonolytic method for depolymerizing polysaccharides to examine the influence of the molecular size of PS A on cell-mediated immunity. Ozonolysis successfully depolymerized PS A into structurally intact fragments. PS A with average molecular sizes of 129.0 (native), 77.8, 46.9, and 17.1 kDa stimulated CD4+-cell proliferation in vitro to the same degree, whereas the 5.0-kDa fragment was much less stimulatory than the control 129.0-kDa PS A. Rats treated with 129.0-kDa, 46.9-kDa, and 17.1-kDa PS A molecules, but not those treated with the 5.0-kDa molecule, were protected against intraabdominal abscesses induced by challenge with viable B. fragilis. These results demonstrate that a zwitterionic polysaccharide as small as 22 repeating units (88 monosaccharides) elicits a T cell-dependent immune response. These findings clearly distinguish zwitterionic T cell-dependent polysaccharides from T cell-independent polysaccharides and give evidence of the existence of a novel mechanism for a polysaccharide-induced immune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app