Add like
Add dislike
Add to saved papers

Spontaneous and evoked cortical dynamics during deep anaesthesia.

In this paper we have studied cortical dynamics as assessed using graphical methods during deep anaesthesia. Graphical analysis was carried out by autocorrelation functions and return maps with different lags. During moderate and deep anaesthesia, the electroencephalogram (EEG) shows a burst suppression pattern, consisting of abruptly-occurring high amplitude bursts alternating with periods of relative silence. Deep anaesthesia with burst suppression pattern provides a simple model of brain activity when the noise that is usually present in a subject who is awake is suppressed. During anaesthesia-induced EEG suppression, the brain reacts to different external stimuli with bursts. In respect to sensory processing during anaesthesia, it is interesting to know whether these bursts have different dynamics depending on the stimuli used. We have used graphical analysis to reveal the possible differences in bursts evoked by different stimuli. Externally evoked bursts were induced by auditory, electric and visual stimuli. The EEG studied in this paper consists of 25 bursts from one subject. We have estimated the autocorrelation function for each burst and used the formation gained from such autocorrelation coefficients as the grounds for determining different lags for return maps. The graphical methods used revealed differences in dynamics and topology of bursts as evoked by different stimuli. Spontaneous bursts clearly had different dynamics from evoked burst; which could not be seen directly from the raw EEG data. This study suggests that graphical analysis is a useful tool to obtain information about the dynamics of neuronal processes behind cortical responses during deep anaesthesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app