Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Skeletal muscle and heart antioxidant defences in response to sprint training.

Although endurance training enhances the antioxidant defence of different tissues, information on the effect of sprint training is scanty. We examined the effect of sprint training on rat skeletal muscle and heart antioxidant defences. Male Wistar rats, 16-17 weeks old, were sprint trained on a treadmill for 6 weeks. Total glutathione levels and activities of glutathione peroxidase, glutathione reductase, glutathione S-transferase and superoxide dismutase in heart and various skeletal muscles were compared in trained and control sedentary animals. Lactate dehydrogenase and citrate synthase enzyme activities were measured in muscle to test the effects of training on glycolytic and oxidative metabolism. Sprint training significantly increased lactate dehydrogenase activity in predominantly fast glycolytic muscles and enhanced total glutathione contents of the superficial white quadriceps femoris, mixed gastrocnemius and fast-glycolytic extensor digitorum longus muscles. Oxidative metabolic capacity increased in plantaris muscle only. Compared with the control group, glutathione peroxidase activities in gastrocnemius, extensor digitorum longus muscles and heart also increased in sprint trained rats. Glutathione reductase activities increased significantly in the extensor digitorum longus muscle and heart. Glutathione S-transferase activity was also higher in the sprint trained extensor digitorum longus muscle. Sprint training did not influence glutathione levels or glutathione-related enzymes in the soleus muscle. Superoxide dismutase activity remained unchanged in skeletal muscle and heart. Sprint training selectively enhanced tissue antioxidant defences by increasing skeletal muscle glutathione content and upregulating glutathione redox cycle enzyme activities in fast and mixed fibre leg muscles and heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app