Add like
Add dislike
Add to saved papers

The role of labile iron on brain proteostasis; could it be an early event of neurodegenerative disease?

Iron deposits in the brain are a natural consequence of aging. Iron accumulation, especially in the form of labile iron, can trigger a cascade of adverse effects, eventually leading to neurodegeneration and cognitive decline. Aging also increases the dysfunction of cellular proteostasis. The question of whether iron alters proteostasis is now being pondered. Herein, we investigated the effect of ferric citrate, considered as labile iron, on various aspects of proteostasis of neuronal cell lines, and also established an animal model having a labile iron diet in order to evaluate proteostasis alteration in the brain along with behavioral effects. According to an in vitro study, labile iron was found to activate lysosome formation but inhibits lysosomal clearance function. Furthermore, the presence of labile iron can alter autophagic flux and can also induce the accumulation of protein aggregates. RNA-sequencing analysis further reveals the upregulation of various terms related to proteostasis along with neurodegenerative disease-related terms. According to an in vivo study, a labile iron-rich diet does not induce iron overload conditions and was not detrimental to the behavior of male Wistar rats. However, an iron-rich diet can promote iron accumulation in a region-dependent manner. By staining for autophagic markers and misfolding proteins in the cerebral cortex and hippocampus, an iron-rich diet was actually found to alter autophagy and induce an accumulation of misfolding proteins. These findings emphasize the importance of labile iron on brain cell proteostasis, which could be implicated in developing of neurological diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app