Add like
Add dislike
Add to saved papers

Helical hollow channel waveguide in YAG fabricated by femtosecond laser enhanced wet etching.

Optics Letters 2024 May 2
Three-dimensional optical waveguides with hollow channels have many advantages, such as strong mode confinement and excellent dispersion control ability. Femtosecond laser enhanced wet etching is widely used to fabricate hollow channel waveguides in transparent dielectric materials. We propose a method for fabricating hollow channel waveguides in YAG using femtosecond laser enhanced wet etching with a simpler fabrication process and shorter etching time compared with the previous work. After 90 h of etching, a series of helical hollow channel waveguides with a length of 5 mm and a radius of 32 µm were successfully fabricated. At a pitch of 3 µm, the waveguide exhibited a loss (including coupling loss and transmission loss) as low as 0.68 dB at 1030 nm. The helical hollow channel waveguide also exhibited exceptional isotropic light confinement capability and remarkable supercontinuum-generating properties. Moreover, helical hollow channel waveguides with a radius of 2 µm were successfully fabricated. According to simulations, waveguides of such size can effectively control dispersion. Our work presents, to our knowledge, a novel approach to fabricating hollow channel waveguides with arbitrary lengths using femtosecond laser-enhanced wet etching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app