Add like
Add dislike
Add to saved papers

Robust Superhydrophobic Films Based on an Eco-Friendly Poly(l-lactic acid)/Cellulose Composite with Controllable Water Adhesion.

Poly(l-lactic acid) (PLLA) featuring desirable biodegradability and biocompatibility has been recognized as one of the promising eco-friendly biomaterials. However, low crystallization and poor mechanical and chemical performances dramatically hamper its practical application. In this work, we report that functionalized cellulose/PLLA composite superhydrophobic stereocomplex films with controllable water adhesion and protein adsorption can be fabricated by a facile approach for the first time. First, cellulose is surface-modified by means of two silanization modification methods. Then, superhydrophobic cellulose/PLLA composite films are prepared through a solvent-evaporation-induced phase separation method. The two cellulose/PLLA composite films exhibit extreme water repellency but tunable water adhesion from sticky to slippery. The protein adsorption capacity of the cellulose/PLLA composite films can also be regulated. In addition, the stereocomplexation of the composite film provides excellent mechanical properties with an elongation at break of 22.36%, which is 237.8% higher than that of a pure PLLA film, which is more suitable for biomaterials. Furthermore, good biodegradability of the PLLA composite films in nature enables the bio-based composites as alternative materials to replace conventional petroleum-based polymers. The superhydrophobic films have also been demonstrated for many applications, including slippery surfaces, liquid transportation without loss, and antifouling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app