Add like
Add dislike
Add to saved papers

Machine-Learning-Assisted Descriptors Identification for Indoor Formaldehyde Oxidation Catalysts.

The development of highly efficient catalysts for formaldehyde (HCHO) oxidation is of significant interest for the improvement of indoor air quality. Up to 400 works relating to the catalytic oxidation of HCHO have been published to date; however, their analysis for collective inference through conventional literature search is still a challenging task. A machine learning (ML) framework was presented to predict catalyst performance from experimental descriptors based on an HCHO oxidation catalysts database. MnO x , CeO2 , Co3 O4 , TiO2 , FeO x , ZrO2 , Al2 O3 , SiO2 , and carbon-based catalysts with different promoters were compiled from the literature. Notably, 20 descriptors including reaction catalyst composition, reaction conditions, and catalyst physical properties were collected for data mining (2263 data points). Furthermore, the eXtreme Gradient Boosting algorithm was employed, which successfully predicted the conversion efficiency of HCHO with an R-square value of 0.81. Shapley additive analysis suggested Pt/MnO2 and Ag/Ce-Co3 O4 exhibited excellent catalytic performance of HCHO oxidation based on the analysis of the entire database. Validated by experimental tests and theoretical simulations, the key descriptor identified by ML, i.e., the first promoter, was further described as metal-support interactions. This study highlights ML as a useful tool for database establishment and the catalyst rational design strategy based on the importance of analysis between experimental descriptors and the performance of complex catalytic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app