Add like
Add dislike
Add to saved papers

A novel strategy for the synthesis of samarium/europium-metal organic frameworks, and their utilization for detection of Cr 3+ , Pb 2+ , and acetone as a luminescent sensor with superior selectivity and sensitivity properties.

With outstanding detection selectivity and sensitivity characteristics, samarium/europium-metal organic frameworks (Sm/Eu-MOF) is capable of functioning as a versatile light-emitting sensor particularly for detecting acetone, Cr3+ , and Pb2+ in aqueous environment. While considering maximum detectable concentrations of 0.85 μM, 0.46 μM, and 1.04 μM, respectively, competitive energy interactions for acetone, absorption of energy for Cr3+ , and substitution of ions for Pb2+ are the elucidated mechanisms of detecting these substances by Sm/Eu-MOF. Successful formulation and synthesis of a core-shell structured Sm/Eu-MOF, which has endurance to acid/alkali conditions and hydration/heat-stability, can be accomplished by utilizing Samarium and Europium nitrate ions, terephthalic acid, and 2, 5-furandicarboxylic acid. The recovery rate of acetone, Cr3+ , and Pb2+ detection from real samples were 95.0-101.0 %, 99.8-101.0 %, and 99.9-104.0 %, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app