Add like
Add dislike
Add to saved papers

Comparison Study of a Thermal-Driven Microstructure in a High-Ni Cathode for Lithium-Ion Batteries: Critical Calcination Temperature for Polycrystalline and Single-Crystalline Design.

High-Ni layered oxide cathodes are promising candidates for lithium-ion batteries due to their high energy density. However, their cycle stability is compromised by the poor mechanical durability of the particle microstructure. In this study, we investigate the impact of the calcination temperature on microstructural changes, including primary particle growth and pore evolution, using LiNi0.88 Mn0.08 Co0.04 O2 (N884), with an emphasis on the critical calcination temperature for polycrystalline and single-crystal designs in high-Ni cathodes. As the calcination temperature increases, the primary particles undergo a rectangular growth pattern while the pore population decreases. Beyond a certain critical temperature (in this case, 850 °C), a sudden increase in primary particle size and a simultaneous rapid reduction in the pore population are observed. This sudden microstructure evolution leads to poor cycle retention in N884. In contrast, single-crystal particles, free of grain boundaries, synthesized at this critical temperature exhibit superior cycle retention, underscoring the significance of microstructural design over crystalline quality for achieving long-term cyclability. Our study sheds light on the interplay between calcination temperature and microstructural evolution, proposing the critical temperature as a key criterion for single-crystal synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app