Add like
Add dislike
Add to saved papers

Polystyrene microplastics induce pulmonary fibrosis by promoting alveolar epithelial cell ferroptosis through cGAS/STING signaling.

Polystyrene microplastics (PS-MPs) are new types of environmental pollutant that have garnered significant attention in recent years since they were found to cause damage to the human respiratory system when they are inhaled. The pulmonary fibrosis is one of the serious consequences of PS-MPs inhalation. However, the impact and underlying mechanisms of PS-MPs on pulmonary fibrosis are not clear. In this study, we studied the potential lung toxicity and PS-MPs-developed pulmonary fibrosis by long-term intranasal inhalation of PS-MPs. The results showed that after exposing to the PS-MPs, the lungs of model mouse had different levels of damage and fibrosis. Meanwhile, exposing to the PS-MPs resulted in a markedly decrease in glutathione (GSH), an increase in malondialdehyde (MDA), and iron overload in the lung tissue of mice and alveolar epithelial cells (AECs). These findings suggested the occurrence of PS-MP-induced ferroptosis. Inhibitor of ferroptosis (Fer-1) had alleviated the PS-MPs-induced ferroptosis. Mechanically, PS-MPs triggered cell ferroptosis and promoted the development of pulmonary fibrosis via activating the cGAS/STING signaling pathway. Inhibition of cGAS/STING with G150/H151 attenuated pulmonary fibrosis after PS-MPs exposure. Together, these data provided novel mechanistic insights of PS-MPs-induced pulmonary fibrosis and a potential therapeutic paradigm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app