Add like
Add dislike
Add to saved papers

Immobilized enzymatic membrane surfaces for biocatalytic organics removal and fouling resistance.

Chemosphere 2024 April 25
This research reported on the immobilization of environmentally friendly enzymes, such as horseradish peroxidase (HRP) and laccase (L), along with the hydrophilic zwitterionic compound L-DOPA on nano-filtration (NF) membranes. This approach introduced biocatalytic membranes, leveraging combined effects between membranes and enzymes. The aim was to systematically assess the efficacy of the enzymatic modified membrane (HRP-NF) in degrading colors in the wastewater, as well as enhancing the membrane resistance toward organic fouling. The enzymatic immobilized membrane demonstrated 96.3 ± 1.8% to 96.6 ± 1.9% removal of colors, and 65.2 ± 1.3% to 67.2 ± 1.3% removal of TOC. This result was underpinned by the insights obtained from the radical scavenger coumarin, which was employed to trap and confirm the formation of PRs through the reaction of enzymes and H2 O2 . Furthermore, membranes modified with enzymes exhibited significantly improved antifouling properties. The HRP-NF membrane experienced an 8% decline in flux, while the co-immobilized HRP-L-NF membrane demonstrated as low as 6% flux decline, contributed by the synergistic effect of increased hydrophilicity and biocatalytic effects. These findings confirmed that the immobilized enzymatic surface has added function of degrading contaminants in addition to separation function of nanofiltration membrane. These L-DOPA-immobilized enzymatic membranes offered a promising hybrid biocatalytic membrane to eliminate dyes and mitigate membrane fouling, which can be applied in many industrial and domestic water and wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app