Add like
Add dislike
Add to saved papers

A stacking-based approach for accurate prediction of antidiabetic peptides.

Diabetes is a chronic disease that is characterized by high blood sugar levels and can have several harmful outcomes. Hyperglycemia, which is defined by persistently elevated blood sugar, is one of the primary concerns. People can improve their overall well-being and get optimal health outcomes by prioritizing diabetes control. Although the use of experimental approaches in diabetes treatment is cost-effective, it necessitates the development of many strategies for evaluating the efficacy of therapies. Researchers can quickly create new strategies for managing diabetes and get vital insights by enabling virtual screening with computational tools and procedures. In this study, we suggest a predictor named STADIP (STacking-based predictor for AntiDiabetic Peptides), a new method to predict antidiabetic peptides (ADPs) utilizing a stacked-based ensemble approach. It uses 12 different feature encodings and seven machine-learning techniques to construct 84 baseline models. The impacts of various baseline models on ADP prediction were then thoroughly examined. A two-step feature selection method, XGB-RFE, was employed to determine the optimal number, m, of 84 PFs to enhance predictive performance. Subsequently, utilizing the meta-predictor approach, 45 selected PFs were integrated into an XGB classifier to formulate the final hybrid model. The proposed method demonstrated superior predictive capabilities compared to constituent baseline models, as evidenced by evaluations on both cross-validation and independent tests. During extensive independent testing, STADIP achieved promising performance with ACC and MCC values of 0.954 and 0.877, respectively. It is anticipated that it will be useful tool in helping the scientific community to identify new antidiabetic proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app