Add like
Add dislike
Add to saved papers

Water will Find Its Way: Transport through Narrow Tunnels in Hydrolases.

An aqueous environment is vital for life as we know it, and water is essential for nearly all biochemical processes at the molecular level. Proteins utilize water molecules in various ways. Consequently, proteins must transport water molecules across their internal network of tunnels to reach the desired action sites, either within them or by functioning as molecular pipes to control cellular osmotic pressure. Despite water playing a crucial role in enzymatic activity and stability, its transport has been largely overlooked, with studies primarily focusing on water transport across membrane proteins. The transport of molecules through a protein's tunnel network is challenging to study experimentally, making molecular dynamics simulations the most popular approach for investigating such events. In this study, we focused on the transport of water molecules across three different α/β-hydrolases: haloalkane dehalogenase, epoxide hydrolase, and lipase. Using a 5 μs adaptive simulation per system, we observed that only a few tunnels were responsible for the majority of water transport in dehalogenase, in contrast to a higher diversity of tunnels in other enzymes. Interestingly, water molecules could traverse narrow tunnels with subangstrom bottlenecks, which is surprising given the commonly accepted water molecule radius of 1.4 Å. Our analysis of the transport events in such narrow tunnels revealed a markedly increased number of hydrogen bonds formed between the water molecules and protein, likely compensating for the steric penalty of the process. Overall, these commonly disregarded narrow tunnels accounted for ∼20% of the total water transport observed, emphasizing the need to surpass the standard geometrical limits on the functional tunnels to properly account for the relevant transport processes. Finally, we demonstrated how the obtained insights could be applied to explain the differences in a mutant of the human soluble epoxide hydrolase associated with a higher incidence of ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app