Add like
Add dislike
Add to saved papers

Highly Stable Silicon Anode Enabled by a Water-Soluble Tannic Acid Functionalized Dual-Network Binder.

Silicon (Si), a high-capacity electrode material, is crucial for achieving high-energy-density lithium-ion batteries. However, Si suffers from poor cycling stability due to its significant volume changes during operation. In this work, a tannic acid functionalized aqueous dual-network binder with an intramolecular tannic acid functionalized network has been synthesized, which is composed of covalent-cross-linked polyamide and ionic-cross-linked alginate (Alg(Ni)-PAM-TA), and employed as an advanced binder for stabilizing Si anodes. The resultant Alg(Ni)-PAM-TA binder, incorporating diverse functional groups including amide, carboxylic acid, and dynamic hydrogen bonds, can easily interact with both Si nanoparticles and the Cu foil, thereby facilitating the formation of a highly resilient network characterized by exceptional adhesion strength. Moreover, molecular dynamics (MD) simulations indicate that the Alg(Ni)-PAM-TA network shows an increased intramolecular hydrogen bond number with increasing concentration of TA and a decreased intramolecular hydrogen bond between PAM and Alg as a result of the aggregation behavior of tannic acids themselves. Consequently, the binder significantly enhances the Si electrode's integrity throughout repeated charge/discharge cycles. At a current density of 0.84 A g-1 , the Si electrode retains a capacity of 1863.4 mAh g-1 after 200 cycles. This aqueous binder functionalized with the intramolecular network via the incorporation of TA molecules holds great promise for the development of high-energy-density lithium-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app