Add like
Add dislike
Add to saved papers

How PBPK Can Help to Understand Old Drugs and Inform their Dosing in Elderly: Amantadine Case Study.

Amantadine, despite being on the market for 55 years, has several unknown aspects of its pharmacokinetics especially related to the influence of covariates such as age, disease, or interactions linked to amantadine's renal elimination. As amantadine is used in Parkinson's disease and is considered a potential candidate in COVID treatment and other diseases, there is an unmet need for thorough understanding of its pharmacokinetic in special populations, such as the elderly. We aimed to mechanistically describe amantadine pharmacokinetics in healthy subjects and shed some light on the differences in drug behavior between healthy volunteers (18-65 years) and an elderly/geriatric population (65-98 years) using PBPK modeling and simulation. The middle-out PBPK model includes mechanistic description of drug renal elimination, specifically an organic cation transporter (OCT)2-mediated electrogenic bidirectional transport (basolateral) and multidrug and toxic compound extrusion (MATE)1-mediated efflux (apical). The model performance was verified against plasma and urine data reported after single and multiple dose administration in healthy volunteers and elderly patients from 18 independent studies. The ratios of predicted vs. observed maximal plasma concentration and area under the concentration-time curve values were within 1.25-fold. The model illustrates that renal transporter activity is expected to decrease in healthy elderly compared to healthy volunteers, which is in line with literature proteomic data for OCT2. The model was applied to assess the potential of reaching toxicity-related plasma concentrations in different age groups of geriatric subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app