Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Imaging segmentation mechanism for rectal tumors using improved U-Net.

BMC Medical Imaging 2024 April 24
OBJECTIVE: In radiation therapy, cancerous region segmentation in magnetic resonance images (MRI) is a critical step. For rectal cancer, the automatic segmentation of rectal tumors from an MRI is a great challenge. There are two main shortcomings in existing deep learning-based methods that lead to incorrect segmentation: 1) there are many organs surrounding the rectum, and the shape of some organs is similar to that of rectal tumors; 2) high-level features extracted by conventional neural networks often do not contain enough high-resolution information. Therefore, an improved U-Net segmentation network based on attention mechanisms is proposed to replace the traditional U-Net network.

METHODS: The overall framework of the proposed method is based on traditional U-Net. A ResNeSt module was added to extract the overall features, and a shape module was added after the encoder layer. We then combined the outputs of the shape module and the decoder to obtain the results. Moreover, the model used different types of attention mechanisms, so that the network learned information to improve segmentation accuracy.

RESULTS: We validated the effectiveness of the proposed method using 3773 2D MRI datasets from 304 patients. The results showed that the proposed method achieved 0.987, 0.946, 0.897, and 0.899 for Dice, MPA, MioU, and FWIoU, respectively; these values are significantly better than those of other existing methods.

CONCLUSION: Due to time savings, the proposed method can help radiologists segment rectal tumors effectively and enable them to focus on patients whose cancerous regions are difficult for the network to segment.

SIGNIFICANCE: The proposed method can help doctors segment rectal tumors, thereby ensuring good diagnostic quality and accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app