Add like
Add dislike
Add to saved papers

Dynamic changes in lysosome-related pathways in APP/PS1 mice with aging.

MedComm. 2024 April
Senile plaque, composed of amyloid β protein (Aβ) aggregates, is a critical pathological feature in Alzheimer's disease (AD), leading to cognitive dysfunction. However, how Aβ aggregates exert age-dependent toxicity and temporal cognitive dysfunction in APP/PS1 mice remains incompletely understood. In this study, we investigated AD pathogenesis and dynamic alterations in lysosomal pathways within the hippocampus of age-gradient male mice using transcriptome sequencing, molecular biology assays, and histopathological analyses. We observed high levels of β-amyloid precursor protein (APP) protein expression in the hippocampus at an early stage and age-dependent Aβ deposition. Transcriptome sequencing revealed the enrichment of differential genes related to the lysosome pathway. Furthermore, the protein expression of ATP6V0d2 and CTSD associated with lysosomal functions exhibited dynamic changes with age, increasing in the early stage and decreasing later. Similar age-dependent patterns were observed for the endosome function, autophagy pathway, and SGK1/FOXO3a pathway. Nissl and Golgi staining in the hippocampal region showed age-dependent neuronal loss and synaptic damage, respectively. These findings clearly define the age-gradient changes in the autophagy-lysosome system, the endosome/lysosome system, and the SGK1/FOXO3a pathway in the hippocampus of APP/PS1 mice, providing new perspectives and clues for understanding the possible mechanisms of AD, especially the transition from compensatory to decompensated state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app