Add like
Add dislike
Add to saved papers

Design and Performance Analysis of a Mecanum-Built Perturbation-Based Balance Training Device.

This study proposes a mecanum-built perturbation-based balance training device aimed at improving motor adaptive skills for fall prevention in individuals with neurological disorders or the elderly. Incorporating multidirectional fall simulations in line with modified constraint-induced movement therapy, the device's efficacy was evaluated by measuring the distance traveled and peak acceleration under different static loads (20, 30, and 40 kg) and input accelerations (1, 2, and 3 m/s2 ). A pilot study with 10 subjects was conducted to assess device performance, utilizing repeated measures analysis of variance and Bonferroni's post hoc analysis. Results indicated a load-dependent reduction in distance traveled, with an average mean difference of 0.74-1.23 cm between the 20 and 40 kg loads for trials of 9 and 18 cm, respectively. Despite varying loads, the device consistently achieved near-anticipated peak accelerations, suggesting its capability to induce effective perturbations. The study also observed a significant lateral movement preference, suggesting adjustments to pulse width modulation and time period may optimize lateral movement performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app