Add like
Add dislike
Add to saved papers

The time-domain Cartesian multipole expansion of electromagnetic fields.

Scientific Reports 2024 April 7
Time-domain solutions of Maxwell's equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are computationally intensive and require significant memory. Semi-analytical solutions (e.g., series expansion), such as those provided by the current theoretical framework of the multipole expansion, can be discouraging for practical case studies. This paper shows how sophisticated mathematical tools standard in modern physics can be leveraged to find semi-analytical solutions for arbitrary localized time-varying current distributions thanks to the novel time-domain Cartesian multipole expansion. We present the theory, apply it to a concrete application involving the imaging of an intricate current distribution, verify our results with an existing analytical approach, and compare the proposed method to a finite-difference time-domain numerical simulation. Thanks to the concept of current "pixels" introduced in this paper, we derive time-domain semi-analytical solutions of Maxwell's equations for arbitrary planar geometries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app