Add like
Add dislike
Add to saved papers

DECIDE: A decoupled semantic and boundary learning network for precise osteosarcoma segmentation by integrating multi-modality MRI.

Automated Osteosarcoma Segmentation in Multi-modality MRI (AOSMM) holds clinical significance for effective tumor evaluation and treatment planning. However, the precision of AOSMM is challenged by the diverse characteristics of multi-modality MRI and the inherent heterogeneity and boundary ambiguity of osteosarcoma. While numerous methods have made significant strides in automated osteosarcoma segmentation, they primarily focused on the use of a single MRI modality and overlooked the potential benefits of integrating complementary information from other MRI modalities. Furthermore, they did not adequately model the long-range dependencies of complex tumor features, which may lead to insufficiently discriminative feature representations. To this end, we propose a decoupled semantic and boundary learning network (DECIDE) to achieve precise AOSMM with three functional modules. The Multi-modality Feature Fusion and Recalibration (MFR) module adaptively fuses and recalibrates multi-modality features by exploiting their channel-wise dependencies to compute low-rank attention weights for effectively aggregating useful information from different MRI modalities, which promotes complementary learning between multi-modality MRI and enables a more comprehensive tumor characterization. The Lesion Attention Enhancement (LAE) module employs spatial and channel attention mechanisms to capture global contextual dependencies over local features, significantly enhancing the discriminability and representational capacity of intricate tumor features. The Boundary Context Aggregation (BCA) module further enhances semantic representations by utilizing boundary information for effective context aggregation while also ensuring intra-class consistency in cases of boundary ambiguity. Substantial experiments demonstrate that DECIDE achieves exceptional performance in osteosarcoma segmentation, surpassing state-of-the-art methods in terms of accuracy and stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app