Add like
Add dislike
Add to saved papers

PUTransGCN: identification of piRNA-disease associations based on attention encoding graph convolutional network and positive unlabelled learning.

Piwi-interacting RNAs (piRNAs) play a crucial role in various biological processes and are implicated in disease. Consequently, there is an escalating demand for computational tools to predict piRNA-disease interactions. Although there have been computational methods proposed for the detection of piRNA-disease associations, the problem of imbalanced and sparse dataset has brought great challenges to capture the complex relationships between piRNAs and diseases. In response to this necessity, we have developed a novel computational architecture, denoted as PUTransGCN, which uses heterogeneous graph convolutional networks to uncover potential piRNA-disease associations. Additionally, the attention mechanism was used to adjust the weight parameters of aggregation heterogeneous node features automatically. For tackling the imbalanced dataset problem, the combined positive unlabelled learning (PUL) method comprising PU bagging, two-step and spy technique was applied to select reliable negative associations. The features of piRNAs and diseases were derived from three distinct biological sources by PUTransGCN, including information on piRNA sequences, semantic terms related to diseases and the existing network of piRNA-disease associations. In the experiment, PUTransGCN performs in 5-fold cross-validation with an AUC of 0.93 and 0.95 on two datasets, respectively, which outperforms the other six state-of-the-art models. We compared three different PUL methods, and the results of the ablation experiment indicate that the combined PUL method yields the best results. The PUTransGCN could serve as a valuable piRNA-disease prediction tool for upcoming studies in the biomedical field. The code for PUTransGCN is available at https://github.com/chenqiuhao/PUTransGCN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app