Add like
Add dislike
Add to saved papers

Validation of upper thermal thresholds for outdoor sports using thermal physiology modelling.

Thermal safety guidelines with upper thresholds aim to protect athletes' health, yet evidence-based sport-specific thresholds remain unestablished. Experimenting with athletes in severely hot conditions raises ethical concerns, so we used a thermo-physiological model to validate the thresholds of guidelines for outdoor sports. First, the reproducibility of the joint system thermoregulation model (JOS-3) of core temperature has been validated for 18 sports experiments ( n  = 213) and 11 general exercise experiments ( n  = 121) using the Bland - Altman analysis. Then, core temperatures were predicted using the JOS-3 in conditions corresponding to the upper thresholds, and if the 90th -99.7th percentile core temperature value (corresponding to 0.3%-10% of the participants) exceeded 40°C, the thresholds were judged as potentially hazardous. Finally, we proposed revisions for sports with potentially hazardous thresholds. As a result, the JOS-3 could simulate core temperature increases in most experiments (27/29) for six sports and general exercises with an accuracy of 0.5°C. The current upper thresholds for marathons, triathlons, and football are potentially hazardous. Suggested revisions, based on specified percentiles, include: Football: revise from wet bulb globe temperature (WBGT) 32°C to 29-31°C or not revise. Marathon: revise from WBGT 28°C to 24-27°C. Triathlon: revise from WBGT 32.2°C to 23-26°C. If conducting sports events under the revised upper thresholds proves difficult, taking measures for a possible high incidence of heat illness becomes crucial, such as placing additional medical resources, assisting heat acclimatization and cooling strategies for participants, and rule changes such as shorter match times and increased breaks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app