Add like
Add dislike
Add to saved papers

Time-dependent impact of a high-fat diet on the intestinal barrier of male mice.

BACKGROUND: Excessive saturated fat intake compromises the integrity of the intestinal mucosa, leading to low-grade inflammation, impaired mucosal integrity, and increased intestinal permeability, resulting in the migration of lipopolysaccharide (LPS) to other tissues.

AIM: To evaluate the chronic effects (at 10 and 16 wk) of a high-fat diet (HFD) (with 50% energy as fat) on the phylogenetic gut microbiota distribution and intestinal barrier structure and protection in C57BL/6 mice.

METHODS: Forty adult male mice were divided into four nutritional groups, where the letters refer to the type of diet (control and HFD or HF) and the numbers refer to the period (in weeks) of diet administration: Control diet for 10 wk, HFD for 10 wk, control diet for 16 wk, and HFD for 16 wk. After sacrifice, biochemical, molecular, and stereological analyses were performed.

RESULTS: The HF groups were overweight, had gut dysbiosis, had a progressive decrease in occludin immunostaining, and had increased LPS concentrations. Dietary progression reduced the number of goblet cells per large intestine area and Mucin2 expression in the HF16 group, consistent with a completely disarranged intestinal ultrastructure after 16 wk of HFD intake.

CONCLUSION: Chronic HFD intake causes overweight, gut dysbiosis, and morphological and functional alterations of the intestinal barrier after 10 or 16 wk. Time-dependent reductions in goblet cell numerical density and mucus production have emerged as targets for countering obesity-driven intestinal damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app