Journal Article
Review
Add like
Add dislike
Add to saved papers

Upping the ante: enhanced expression of interferon-antagonizing ORF6 and ORF9b proteins by SARS-CoV-2 variants of concern.

SARS-CoV-2 exhibits a remarkable capability to subvert the host antiviral innate immune system. This adeptness is orchestrated by viral proteins, which initially attempt to obstruct the activation of the antiviral immune program and then act as a fail-safe mechanism to mitigate the downstream effects of the activated immune response. This dual strategy leads to delayed expression and enfeebled action of type-I and -III interferons at the infection site, enabling the virus to replicate extensively in the lungs and subsequently disseminate to other organs. Throughout the course of the COVID-19 pandemic, SARS-CoV-2 has undergone evolution, giving rise to several variants of concern, some with exceedingly higher transmission and virulence. These improved features have been linked, at least in part, to the heightened expression or activity of specific viral proteins involved in circumventing host defense mechanisms. In this review, we aim to provide a concise summary of two SARS-CoV-2 proteins, ORF6 and ORF9b, which provided selective advantage to certain variants, affecting their biology and pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app