Add like
Add dislike
Add to saved papers

Functional upcycling of waste PET plastic to the hybrid magnetic microparticles adsorbent for cesium removal.

Chemosphere 2024 March 15
Accumulation of mismanaged plastic in the environment and the appearance of emerging plastic-derived pollutants such as microplastics strongly demand technologies for waste plastic utilization. In this study, polyethylene terephthalate (PET) from waste plastic bottles was directly utilized to prepare a matrix of an adsorbent for cesium (Cs+ ) removal. The organic matrix of PET-derived oligomers obtained from aminolysis was impregnated with bentonite clay and magnetite nanoparticles (Fe3 O4 NPs), playing the roles as a major adsorptive medium for Cs+ removal and as a functional component to primarily provide efficient separation of the hybrid adsorbent from aqueous system, respectively. The obtained hybrid composite microparticles were next tested as an adsorbent for the removal of Cs +  cation from aqueous solutions. The adsorption process was characterized by fast kinetics reaching ca. 60% of the equilibrium adsorption capacity within 5 min and the maximum adsorption capacity toward Cs+ was found to be 26.8 mg/g. The adsorption process was primarily dominated by the cationic exchange in bentonite, which was not significantly affected by the admixture of the competing mono- and divalent cations (Na+ , K+ , and Mg2+ ). The proposed approach here exploits the sustainable utilization scenario of plastic waste-derived material to template complex multifunctional composites that can find applications for pollution cleaning and environmental remediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app