Add like
Add dislike
Add to saved papers

Spectral diffusion of electron spin polarization in glasses doped with radicals for DNP.

Spectral diffusion of electron spin polarization plays a key part in dynamic nuclear polarization (DNP). It determines the distribution of polarization across the electron spin resonance (ESR) line and consequently the polarization that is available for transfer to the nuclear spins. Various authors have studied it experimentally by means of electron-electron double resonance (ELDOR) and proposed and used macroscopic models to interpret these experiments. However, microscopic models predicting the rate of spectral diffusion are scarce. The present article is an attempt to fill this gap. It derives a spectral diffusion equation from first principles and uses Monte Carlo simulations to determine the parameters in this equation. The derivation given here builds on an observation made in a previous article on nuclear dipolar relaxation: spectral diffusion is also spatial diffusion and the random distribution of spins in space limits the former. This can be modelled assuming that rapid flip-flop transitions between a spin and its nearest neighbour do not contribute to diffusion of polarization across the ESR spectrum. The present article presents predictions of the spectral diffusion constant and shows that this limitation may lower the spectral diffusion constant by several orders of magnitude. As a check the constant is determined from first principles for a sample containing 40 mM TEMPOL. Including the limitation then results in a value that is close to that obtained from an analysis of previously reported ELDOR experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app