Add like
Add dislike
Add to saved papers

Machine Learning-based Classification of transcriptome Signatures of non-ulcerative Bladder Pain Syndrome.

bioRxiv 2024 January 9
Lower urinary tract dysfunction (LUTD) presents a global health challenge with symptoms impacting a substantial percentage of the population. The absence of reliable biomarkers complicates the accurate classification of LUTD subtypes with shared symptoms such as non- ulcerative Bladder Pain Syndrome (BPS) and overactive bladder caused by bladder outlet obstruction with Detrusor Overactivity (DO). This study introduces a machine learning (ML)- based approach for the identification of mRNA signatures specific to non-ulcerative BPS. Using next-generation sequencing (NGS) transcriptome data from bladder biopsies of patients with BPS, benign prostatic obstruction with DO and controls, our statistical approach successfully identified 13 candidate genes capable of discerning BPS from control and DO patients. This set was subsequently validated using Quantitative Polymerase Chain Reaction (QPCR) in a larger patient cohort. To confirm our findings, we applied both supervised and unsupervised ML approaches to the QPCR dataset. Notably, a three-mRNA signature TPPP3, FAT1, and NCALD, emerged as a robust classifier, effectively distinguishing patients with non- ulcerative BPS from controls and patients with DO. This signature was universally selected by both supervised and unsupervised approaches. The ML-based framework used to define BPS classifiers not only establishes a solid foundation for comprehending the specific gene expression changes in the bladder of the patients with BPS but also serves as a valuable resource and methodology for advancing signature identification in other fields. The proposed ML pipeline demonstrates its efficacy in handling challenges associated with limited sample sizes, offering a promising avenue for applications in similar domains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app