Add like
Add dislike
Add to saved papers

Renal regenerative capacity related to stem cell reserve in nephrectomized rats.

World Journal of Urology 2024 January 12
PURPOSE: On the new era of stem cell therapy, the present experimental study was conducted to investigate renal regenerative capacity related to kidney stem cell reserve in different nephrectomy (Nx) models.

METHODS: Three- and eight-week-old rats (n = 168) were randomly divided into four groups to include control and three Nx subgroups (1/6 Nx, 1/2 Nx, and 5/6 Nx) (Fig. 1). On post-Nx days 15, 30 and 60, kidney specimens were obtained to determine renal regenerative capacity. The specimens were examined with immunofluorescence. CD90/CD105 and Ki-67 expressions were determined as stem cell and cellular proliferation markers, respectively. Fig. 1 Intraoperative photographs showing three different types of nephrectomies (unilateral total Nx has not been shown in 5/6 Nx group) RESULTS: CD90 and CD105 expressions were stronger in glomeruli, but Ki-67 expressions were present only in tubuli. When all Nx types and post-Nx days were considered, both 3- and 8-week-old rats undergone 5/6 Nx had the highest glomerular CD90 and CD105 double expressions. While the expressions gradually increased toward the day 60 in 3-weeks old rats, 8-week-old rats had almost stable double expressions. The strongest tubular Ki-67 expressions were seen in 5/6 Nx groups of both in 3- and 8-week-old rats. The expressions were strongest on day 15 and then gradually decreased. Ipsilateral 1/6 Nx groups had stronger Ki-67 expression than contralateral ones in both age groups.

CONCLUSIONS: Kidneys may pose a regenerative response to tissue/volume loss through its own CD90- and CD105-related stem cell reserve which mainly takes place in glomeruli and seems to have some interactions with Ki-67-related tubular proliferative process. This response supports that kidney stem cells may have a potential to overcome tissue/volume loss-related damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app