Add like
Add dislike
Add to saved papers

BGRL: Basal Ganglia inspired Reinforcement Learning based framework for deep brain stimulators.

Deep Brain Stimulation (DBS) is an implantable medical device used for electrical stimulation to treat neurological disorders. Traditional DBS devices provide fixed frequency pulses, but personalized adjustment of stimulation parameters is crucial for optimal treatment. This paper introduces a Basal Ganglia inspired Reinforcement Learning (BGRL) approach, incorporating a closed-loop feedback mechanism to suppress neural synchrony during neurological fluctuations. The BGRL approach leverages the resemblance between the Basal Ganglia region of brain by incorporating the actor-critic architecture of reinforcement learning (RL). Simulation results demonstrate that BGRL significantly reduces synchronous electrical pulses compared to other standard RL algorithms. BGRL algorithm outperforms existing RL methods in terms of suppression capability and energy consumption, validated through comparisons using ensemble oscillators. Results shown in the paper demonstrate BGRL suppressed the synchronous electrical pulses across three signaling regimes namely regular, chaotic and bursting by 40%, 146% and 40% respectively as compared to soft actor-critic model. BGRL shows promise in effectively suppressing neural synchrony in DBS therapy, providing an efficient alternative to open-loop methodologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app