Journal Article
Multicenter Study
Observational Study
Add like
Add dislike
Add to saved papers

Absolute Contusion Expansion Is Superior to Relative Expansion in Predicting Traumatic Brain Injury Outcomes: A Multi-Center Observational Cohort Study.

Contusion expansion (CE) is a potentially treatable outcome predictor in traumatic brain injury (TBI), and a suitable end-point for hemostatic therapy trials. However, there is no consensus on the definition of clinically relevant CE, both in terms of measurement criteria (absolute vs. relative volume increase) and cutoff values. In light of this, the aim of this study was to assess the predictive abilities of different CE definitions on outcome. We performed a multi-center observational cohort study of adults with moderate-to-severe TBI treated in an intensive care unit. The exposure of interest was CE, defined as the absolute and relative volume change between the first and second computed tomography scan. The primary outcome was the Glasgow Outcome Scale (GOS) at 6-12 months post-injury, dichotomized into unfavorable (GOS ≤3) or favorable (GOS ≥4). The secondary outcome was all-cause mortality. In total, 798 patients were included, with a median duration of 7.0 h between the first and second CT scan. The median absolute and relative CE was 1.5 mL (interquartile range [IQR] 0.1-8.3 mL) and 100% (IQR 10-530%), respectively. Both CE forms were independently associated with unfavorable GOS. Absolute CE outperformed relative CE in predicting both unfavorable GOS (area under the curve [AUC]: 0.65 vs. 0.60, p  = 0.002) and all-cause mortality (AUC: 0.66 vs. 0.60, p  = 0.003). For dichotomized CE, absolute cutoffs of 1-10 mL yielded the best results. We conclude that absolute CE demonstrates stronger outcome correlation than relative CE. In studies focusing on lesion progression in TBI, it may be advantageous to use absolute CE as the primary outcome metric. For dichotomized outcomes, cutoffs between 1 and 10 mL are suggested, depending on the desired sensitivity-specificity balance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app