Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rapid changes of mRNA expressions of cardiac ion channels affected by Torsadogenic drugs influence susceptibility of rat hearts to arrhythmias induced by Beta-Adrenergic stimulation.

Drug-induced long QT syndrome (LQTS) and Torsades de Pointes (TdP) are serious concerns in drug development. Although rats are a useful scientific tool, their hearts, unlike larger species, usually do not respond to torsadogenic drugs. Consequently, their resistance to drug-induced arrhythmias is poorly understood. Here, we challenged rats with rapid delayed rectifier current (Ikr)-inhibiting antibiotic clarithromycin (CLA), loop diuretic furosemide (FUR) or their combination (CLA + FUR), and examined functional and molecular abnormalities after stimulation with isoproterenol. Clarithromycin and furosemide were administered orally at 12-h intervals for 7 days. To evaluate electrical instability, electrocardiography (ECG) was recorded either in vivo or ex vivo using the Langendorff-perfused heart method under basal conditions and subsequently under beta-adrenergic stimulation. Gene expression was measured using real-time quantitative PCR in left ventricular tissue. Indeed, FUR and CLA + FUR rats exhibited hypokalemia. CLA and CLA + FUR treatment resulted in drug-induced LQTS and even an episode of TdP in one CLA + FUR rat. The combined treatment dysregulated gene expression of several ion channels subunits, including KCNQ1, calcium channels and Na+/K + -ATPase subunits, while both monotherapies had no impact. The rat with recorded TdP exhibited differences in the expression of ion channel genes compared to the rest of rats within the CLA + FUR group. The ECG changes were not detected in isolated perfused hearts. Hence, we report rapid orchestration of ion channel reprogramming of hearts with QT prolongation induced by simultaneous administration of clarithromycin and furosemide in rats, which may account for their ability to avoid arrhythmias triggered by beta-adrenergic stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app