Add like
Add dislike
Add to saved papers

Atlas of primary cell-type-specific sequence models of gene expression and variant effects.

Cell Rep Methods 2023 September 6
Human biology is rooted in highly specialized cell types programmed by a common genome, 98% of which is outside of genes. Genetic variation in the enormous noncoding space is linked to the majority of disease risk. To address the problem of linking these variants to expression changes in primary human cells, we introduce ExPectoSC, an atlas of modular deep-learning-based models for predicting cell-type-specific gene expression directly from sequence. We provide models for 105 primary human cell types covering 7 organ systems, demonstrate their accuracy, and then apply them to prioritize relevant cell types for complex human diseases. The resulting atlas of sequence-based gene expression and variant effects is publicly available in a user-friendly interface and readily extensible to any primary cell types. We demonstrate the accuracy of our approach through systematic evaluations and apply the models to prioritize ClinVar clinical variants of uncertain significance, verifying our top predictions experimentally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app