Add like
Add dislike
Add to saved papers

A functional crosstalk between the H3K9 methylation writers and their reader HP1 in safeguarding embryonic stem cell identity.

Stem Cell Reports 2023 September 13
Histone H3 lysine 9 (H3K9) methylation, as a hallmark of heterochromatin, has a central role in cell lineage and fate determination. Although evidence of a cooperation between H3K9 methylation writers and their readers has started to emerge, their actual interplay remains elusive. Here, we show that loss of H3K9 methylation readers, the Hp1 family, causes reduced expression of H3K9 methyltransferases, and that this subsequently leads to the exit of embryonic stem cells (ESCs) from pluripotency and a reciprocal gain of lineage-specific characteristics. Importantly, the phenotypes of Hp1-null ESCs can be rescued by ectopic expression of Setdb1, Nanog, and Oct4. Furthermore, Setdb1 ablation results in loss of ESC identity, which is accompanied by a reduction in the expression of Hp1 genes. Together, our data support a model in which the safeguarding of ESC identity involves the cooperation between the H3K9 methylation writers and their readers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app