Journal Article
Review
Add like
Add dislike
Add to saved papers

Differential modulation of cytochrome P450 enzymes by arsenicals in non-human experimental models.

Drug Metabolism Reviews 2023 September 8
Arsenic is a hazardous heavy metalloid that imposes threats to human health globally. It is widely spread throughout the environment in various forms. Arsenic-based compounds are either inorganic compounds (iAs) or organoarsenicals (oAs), where the latter are biotically generated from the former. Exposure to arsenic-based compounds results in varying biochemical derangements in living systems, leading eventually to toxic consequences. One important target for arsenic in biosystems is the network of metabolic enzymes, especially the superfamily of cytochrome P450 enzymes (CYPs) because of their prominent role in both endobiotic and xenobiotic metabolism. Therefore, the alteration of the CYPs by different arsenicals has been actively studied in the last few decades. We have previously summarized the findings of former studies investigating arsenic associated modulation of different CYPs in human experimental models. In this review, we focus on non-human models to get a complete picture about possible CYPs alterations in response to arsenic exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app