Add like
Add dislike
Add to saved papers

Model-based Design of the COAST Guidewire Robot for Large Deflection.

Minimally invasive endovascular procedures involve the manual placement of a guidewire, which is made difficult by vascular tortuosity and the lack of precise tip control. Steerable guidewire systems have been developed with tendon-driven, magnetic, and concentric tube actuation strategies to enable precise tip control, however, selecting machining parameters for such robots does not have a strict procedure. In this paper, we develop a systematic design procedure for selecting the tube pairs of the COaxially Aligned STeerable (COAST) guidewire robot. This includes the introduction of a mechanical model that accounts for micromachining-induced pre-curvatures with the goal of determining design parameters that reduce combined distal tip pre-curvature and minimize abrupt changes in actuated tip position for the COAST guidewire robot through selection of the best flexural rigidity between the tube pairs. We present adjustments in the kinematics modeling of COAST robot tip bending motion, and use these to characterize the bending behavior of the COAST robot for varying geometries of the micromachined tubes, with an average RMSE value for the tip position error of 0.816 mm in the validation study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app