Add like
Add dislike
Add to saved papers

SWI/SNF complex gene variations are associated with a higher tumor mutational burden and a better response to immune checkpoint inhibitor treatment: a pan-cancer analysis of next-generation sequencing data corresponding to 4591 cases.

Cancer Cell International 2022 November 13
BACKGROUND: Genes related to the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex are frequently mutated across cancers. SWI/SNF-mutant tumors are vulnerable to synthetic lethal inhibitors. However, the landscape of SWI/SNF mutations and their associations with tumor mutational burden (TMB), microsatellite instability (MSI) status, and response to immune checkpoint inhibitors (ICIs) have not been elucidated in large real-world Chinese patient cohorts.

METHODS: The mutational rates and variation types of six SWI/SNF complex genes (ARID1A, ARID1B, ARID2, SMARCA4, SMARCB1, and PBRM1) were analyzed retrospectively by integrating next-generation sequencing data of 4591 cases covering 18 cancer types. Thereafter, characteristics of SWI/SNF mutations were depicted and the TMB and MSI status and therapeutic effects of ICIs in the SWI/SNF-mutant and SWI/SNF-non-mutant groups were compared.

RESULTS: SWI/SNF mutations were observed in 21.8% of tumors. Endometrial (54.1%), gallbladder and biliary tract (43.4%), and gastric (33.9%) cancers exhibited remarkably higher SWI/SNF mutational rates than other malignancies. Further, ARID1A was the most frequently mutated SWI/SNF gene, and ARID1A D1850fs was identified as relatively crucial. The TMB value, TMB-high (TMB-H), and MSI-high (MSI-H) proportions corresponding to SWI/SNF-mutant cancers were significantly higher than those corresponding to SWI/SNF-non-mutant cancers (25.8 vs. 5.6 mutations/Mb, 44.3% vs. 10.3%, and 16.0% vs. 0.9%, respectively; all p  < 0.0001). Furthermore, these indices were even higher for tumors with co-mutations of SWI/SNF genes and MLL2/3. Regarding immunotherapeutic effects, patients with SWI/SNF variations showed significantly longer progression-free survival (PFS) rates than their SWI/SNF-non-mutant counterparts (hazard ratio [HR], 0.56 [95% confidence interval {CI} 0.44-0.72]; p < 0.0001), and PBRM1 mutations were associated with relatively better ICI treatment outcomes than the other SWI/SNF gene mutations (HR, 0.21 [95% CI 0.12-0.37]; p = 0.0007). Additionally, patients in the SWI/SNF-mutant + TMB-H (HR, 0.48 [95% CI 0.37-0.54]; p  < 0.0001) cohorts had longer PFS rates than those in the SWI/SNF-non-mutant + TMB-low cohort.

CONCLUSIONS: SWI/SNF complex genes are frequently mutated and are closely associated with TMB-H status, MSI-H status, and superior ICI treatment response in several cancers, such as colorectal cancer, gastric cancer, and non-small cell lung cancer. These findings emphasize the necessity and importance of molecular-level detection and interpretation of SWI/SNF complex mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app