Add like
Add dislike
Add to saved papers

A two-prong mutagenesis and adaptive evolution strategy to enhance the temperature tolerance and productivity ofNannochloropsis oculata.

Bioresource Technology 2022 October 12
Incorporation of microalgae in biorefineries intended to help society reach carbon neutrality is hindered by algal growth inhibition at high temperatures, necessitating the use of costly and carbon-intensive cooling systems. In the present study, a two-prong strategy of random mutagenesis and adaptive laboratory evolution to generate robust thermotolerant strains of Nannochloropsis oculata, was used. The best mutants demonstrated increased productivity at 35°C, which was 10°C higher than the optimal temperature of the wild type. In a 2-L photobioreactor at 35°C, biomass and lipid productivity were 1.43-fold and 2.24-fold higher, respectively, than wild type at 25°C. Higher pigment and carbohydrate content contributed to the mutants' rapid growth and enhanced photosynthetic efficiency. Metabolomics and lipidomics showed rewiring of the central carbon metabolism and membrane lipid synthesis in thermotolerant strains to ensure cellular homeostasis without compromising productivity. Tagatose and phosphatidylethanolamine upregulation were identified as future genetic targets for further enhancing lipid production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app