Add like
Add dislike
Add to saved papers

Iterative reconstruction with multifrequency signal recognition technology to improve low-contrast detectability: A phantom study.

Background: Brain CT needs more attention to improve the extremely low image contrast and image texture.

Purpose: To evaluate the performance of iterative progressive reconstruction with visual modeling (IPV) for the improvement of low-contrast detectability (IPV-LCD) compared with filtered backprojection (FBP) and conventional IPV.

Materials and methods: Low-contrast and water phantoms were used. Helical scans were conducted with the use of a CT scanner with 64 detectors. The tube voltage was set at 120 kVp; the tube current was adjusted from 60 to 300 mA with a slice thickness of 0.625 mm and from 20 to 150 mA with a slice thickness of 5.0 mm. Images were reconstructed with the FBP, conventional IPV, and IPV-LCD algorithms. The channelized Hotelling observer (CHO) model was applied in conjunction with the use of low-contrast modules in the low-contrast phantom. The noise power spectrum (NPS) and normalized NPS were calculated.

Results: At the same standard and strong levels, the IPV-LCD method improved low-contrast detectability compared with the conventional IPV, regardless of contrast-rod diameters. The mean CHO values at a slice thickness of 0.625 mm were 1.83, 3.28, 4.40, 4.53, and 5.27 for FBP, IPV STD, IPV-LCD STD, IPV STR, and IPV-LCD STR, respectively. The normalized NPS for the IPV-LCD STD and STR images were slightly shifted to the higher frequency compared with that for the FBP image.

Conclusion: IPV-LCD images further improve the low-contrast detectability compared with FBP and conventional IPV images while maintaining similar FBP image appearances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app