Add like
Add dislike
Add to saved papers

Design and Synthesis of Novel Diosgenin-triazole Hybrids Targeting Inflammation as Potential Neuroprotective Agents.

Alzheimer's disease is a progressive neurodegenerative disease, and its incidence is expected to increase as the global population ages. Recent studies provide increasing evidence that inflammation plays a key role in the pathogenesis and progression of AD. Diosgenin, an active ingredient in Dioscorea nipponica Makino, is a promising bioactive lead compound in the treatment of Alzheimer's disease, which exhibited anti-inflammatory activity. To search for more efficient anti-Alzheimer agents, a series of novel diosgenin-triazolyl hybrids were designed, synthesized, and their neuroprotective effects against oxygen-glucose deprivation-induced neurotoxicity and LPS-induced NO production were evaluated. Most of these new hybrids displayed better activities than DIO. In particular, the promising compound L6 not only demonstrated an excellent neuroprotective effect but also showed the best anti-inflammatory activity. The structure-activity relationship study illustrated that the introduction of benzyl or phenyl triazole did improve the activity, and the introduction of benzyl triazole was better than that of phenyl triazole. The results we obtained showed that the diosgenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates, and compound L6 has the potential to be an important lead compound for further research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app