Add like
Add dislike
Add to saved papers

Generalized k -means in GLMs with applications to the outbreak of COVID-19 in the United States.

Generalized k -means can be combined with any similarity or dissimilarity measure for clustering. Using the well known likelihood ratio or F -statistic as the dissimilarity measure, a generalized k -means method is proposed to group generalized linear models (GLMs) for exponential family distributions. Given the number of clusters k , the proposed method is established by the uniform most powerful unbiased (UMPU) test statistic for the comparison between GLMs. If k is unknown, then the proposed method can be combined with generalized liformation criterion (GIC) to automatically select the best k for clustering. Both AIC and BIC are investigated as special cases of GIC. Theoretical and simulation results show that the number of clusters can be correctly identified by BIC but not AIC. The proposed method is applied to the state-level daily COVID-19 data in the United States, and it identifies 6 clusters. A further study shows that the models between clusters are significantly different from each other, which confirms the result with 6 clusters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app