Add like
Add dislike
Add to saved papers

Estimation of Gas Holdup Using the Gassed to Ungassed Power Ratio of an Oxygen-Water System in a Stirred and Sparged Tank Contactor.

ACS Omega 2020 November 18
Gas holdup (εg ) and power correlations in gas-liquid (G-L) systems, apart from the physicochemical properties of the liquid phase, are dependent on impeller-sparger-vessel geometry. To date, reported correlations do not specifically address this issue, and it must be investigated with a unified approach. Here, we propose a correlation via the use of a normalized εg that involves the impeller-sparger system geometry for a vessel of standard geometry expressed as a function of an easily measurable and independent operational parameter, that is, (1 - P g / P l ), where P g / P l is the gassed to ungassed power ratio. Furthermore, our work demonstrates that P g / P l can be used as a tool for the identification of hydrodynamic regimes. Radial and axial impellers with ring spargers were used in a stirred and sparged contactor (SSTC) of 0.25 m diameter containing 1 × 10-2 m3 water. The oxygen flowrate ( Q g ) was varied from 2.5 to 40 LPM or (4.17 to 66.7) × 10-5 m3 s-1 , and the agitation intensity ( N 0 ) was varied from 1.67 to 50 rps at the temperature (θ) = 313 K under atmospheric pressure. This novel correlation is easy to use, offers reasonable precision, and can serve as a valuable alternative to more complex correlation models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app