Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CD122-Selective IL2 Complexes Reduce Immunosuppression, Promote Treg Fragility, and Sensitize Tumor Response to PD-L1 Blockade.

Cancer Research 2020 November 16
The IL2 receptor (IL2R) is an attractive cancer immunotherapy target that controls immunosuppressive T regulatory cells (Treg) and antitumor T cells. Here we used IL2Rβ-selective IL2/anti-IL2 complexes (IL2c) to stimulate effector T cells preferentially in the orthotopic mouse ID8agg ovarian cancer model. Despite strong tumor rejection, IL2c unexpectedly lowered the tumor microenvironmental CD8+ /Treg ratio. IL2c reduced tumor microenvironmental Treg suppression and induced a fragile Treg phenotype, helping explain improved efficacy despite numerically increased Tregs without affecting Treg in draining lymph nodes. IL2c also reduced Treg-mediated, high-affinity IL2R signaling needed for optimal Treg functions, a likely mechanism for reduced Treg suppression. Effector T-cell IL2R signaling was simultaneously improved, suggesting that IL2c inhibits Treg functions without hindering effector T cells, a limitation of most Treg depletion agents. Anti-PD-L1 antibody did not treat ID8agg, but adding IL2c generated complete tumor regressions and protective immune memory not achieved by either monotherapy. Similar anti-PD-L1 augmentation of IL2c and degradation of Treg functions were seen in subcutaneous B16 melanoma. Thus, IL2c is a multifunctional immunotherapy agent that stimulates immunity, reduces immunosuppression in a site-specific manner, and combines with other immunotherapies to treat distinct tumors in distinct anatomic compartments. SIGNIFICANCE: These findings present CD122-targeted IL2 complexes as an advancement in cancer immunotherapy, as they reduce Treg immunosuppression, improve anticancer immunity, and boost PD-L1 immune checkpoint blockade efficacy in distinct tumors and anatomic locations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app