Add like
Add dislike
Add to saved papers

Comparative transcriptome analysis reveals ecological adaption of cold tolerance in northward invasion of Alternanthera philoxeroides.

BMC Genomics 2020 August 3
BACKGROUND: Alternanthera philoxeroides (alligator weed) is a highly invasive alien plant that has continuously and successfully expanded from the tropical to the temperate regions of China via asexual reproduction. During this process, the continuous decrease in temperature has been a key limiting environmental factor.

RESULTS: In this study, we provide a comprehensive analysis of the cold tolerance of alligator weed via transcriptomics. The transcriptomic differences between the southernmost population and the northernmost population of China were compared at different time points of cold treatments. GO enrichment and KEGG pathway analyses showed that the alligator weed transcriptional response to cold stress is associated with genes encoding protein kinases, transcription factors, plant-pathogen interactions, plant hormone signal transduction and metabolic processes. Although members of the same gene family were often expressed in both populations, the levels of gene expression between them varied. Further ChIP experiments indicated that histone epigenetic modification changes at the candidate transcription factor gene loci are accompanied by differences in gene expression in response to cold, without variation in the coding sequences of these genes in these two populations. These results suggest that histone changes may contribute to the cold-responsive gene expression divergence between these two populations to provide the most beneficial response to chilling stimuli.

CONCLUSION: We demonstrated that the major alterations in gene expression levels belonging to the main cold-resistance response processes may be responsible for the divergence in the cold resistance of these two populations. During this process, histone modifications in cold-responsive genes have the potential to drive the major alterations in cold adaption necessary for the northward expansion of alligator weed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app