Add like
Add dislike
Add to saved papers

Overproduction of TNF-α and lung structural remodelling due to chronic exposure to volcanogenic air pollution.

Chemosphere 2019 January 26
Volcanogenic air pollution studies and their effects on the respiratory system are still outnumbered by studies regarding the effects of anthropogenic air pollution, representing an unknown risk to human population inhabiting volcanic areas worldwide (either eruptive or non-eruptive areas). This study was carried in the archipelago of the Azores- Portugal, in two areas with active volcanism (Village of Furnas and Village of Ribeira Quente) and a reference site (Rabo de Peixe). The hydrothermal volcanism of Furnas volcanic complex is responsible for the release of 1000 t d-1 of CO2 , H2 S, the radioactive gas - radon, among others. Besides the gaseous emissions, particulate matter and metals (Hg, Cd, Zn, Al, Ni, etc.) are also released into the environment. We tested a hypothesis whether chronic exposure to volcanogenic air pollution causes lung structural remodelling, in the house mouse, Mus musculus, as a bioindicator species. Histopathological evaluations were performed to assess the amount of macrophages, mononuclear leukocyte infiltrate, pulmonary emphysema, and the production of pro-inflammatory cytokine TNF-α. Also, the percentage of collagen and elastin fibers was calculated. Mice chronically exposed to volcanogenic air pollution presented an increased score in the histopathological evaluations for the amount of macrophages, mononuclear leukocyte infiltrate, pulmonary emphysema and production of TNF-α; and also increased percentages of collagen and elastin. For the first time, we demonstrate that non-eruptive active volcanism has a high potential to cause lung structural remodelling. This study also highlights the Mus musculus as a useful bioindicator for future biomonitoring programs in these type of volcanic environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app