Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mitochondrial Calpain-1 Disrupts ATP Synthase and Induces Superoxide Generation in Type 1 Diabetic Hearts: A Novel Mechanism Contributing to Diabetic Cardiomyopathy.

Diabetes 2016 January
Calpain plays a critical role in cardiomyopathic changes in type 1 diabetes (T1D). This study investigated how calpain regulates mitochondrial reactive oxygen species (ROS) generation in the development of diabetic cardiomyopathy. T1D was induced in transgenic mice overexpressing calpastatin, in mice with cardiomyocyte-specific capn4 deletion, or in their wild-type littermates by injection of streptozotocin. Calpain-1 protein and activity in mitochondria were elevated in diabetic mouse hearts. The increased mitochondrial calpain-1 was associated with an increase in mitochondrial ROS generation and oxidative damage and a reduction in ATP synthase-α (ATP5A1) protein and ATP synthase activity. Genetic inhibition of calpain or upregulation of ATP5A1 increased ATP5A1 and ATP synthase activity, prevented mitochondrial ROS generation and oxidative damage, and reduced cardiomyopathic changes in diabetic mice. High glucose concentration induced ATP synthase disruption, mitochondrial superoxide generation, and cell death in cardiomyocytes, all of which were prevented by overexpression of mitochondria-targeted calpastatin or ATP5A1. Moreover, upregulation of calpain-1 specifically in mitochondria induced the cleavage of ATP5A1, superoxide generation, and apoptosis in cardiomyocytes. In summary, calpain-1 accumulation in mitochondria disrupts ATP synthase and induces ROS generation, which promotes diabetic cardiomyopathy. These findings suggest a novel mechanism for and may have significant implications in diabetic cardiac complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app