Add like
Add dislike
Add to saved papers

Control on shape, porosity and surface hydrophilicity of hematite particles by using polymers.

The shape, porosity, and surface hydrophilicity of hematite particles formed from a forced hydrolysis reaction of acidic FeCl3 solution were controlled by using a trace of polymers (0.001 and 0.003 wt%). The spherical particles were produced on the systems with polyvinyl alcohol (PVA) and polyaspartic acid (PAS). In the case of polyacryl amide (PAAm), slightly small spherical particles were precipitated at 0.003 wt%. However, polyacrylic acid (PAAc) and poly-γ-glutamic acid (PGA) gave ellipsoidal particles. This morphological change on hematite particles depended on the order of functional groups of polymers as -OH<-CONH2<-COOH<-COOH and ⟩C=O, corresponding to the order in extent of polymer molecules for complexation to Fe(3+) ions and adsorption onto particle surface. Accompanying this order, the hematite particles produced were changed from less porous to microporous. On the other hand, only the system with 0.003 wt% of PAAm produced mesoporous hematite particles. Choosing the kinds of polymers also controlled the ultramicroporosity and surface hydrophilicity of the particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app