Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nrf2-Mediated heme oxygenase-1 upregulation as adaptive survival response to glucose deprivation-induced apoptosis in HepG2 cells.

Induction of heme oxygenase-1 (HO-1) represents an important cellular adaptive survival response to oxidative stress and other toxic insults. In the present study, HepG2 cells grown in glucose-free media underwent apoptotic cell death, but they exhibited elevated expression of HO-1 before apoptosis manifested. Treatment of HepG2 cells with SnCl₂, a HO-1 inducer, rescued these cells from glucose deprivation-induced apoptosis, while inhibition of the HO activity with zinc protoporphyrin IX exacerbated apoptosis under the same condition. HepG2 cells transfected with a dominant negative Nrf2 were more vulnerable to glucose deprivation-induced apoptosis compared to cells transfected with empty vector alone. To confirm the involvement of Nrf2 in the induction of HO-1 caused by glucose deprivation, we used embryonic fibroblasts prepared from nrf2⁻(/)⁻, nrf2(+/)⁻, and nrf2(+/+) embryos. Compared to the wild-type and the nrf2(+/)⁻ embryonic fibroblasts, nrf2⁻(/)⁻ cells were less prone to induce HO-1 expression upon glucose deprivation. Exposure of HepG2 cells to glucose-deprived media resulted in an elevated accumulation of reactive oxygen species (ROS). Pretreatment with N-acetylcysteine prevented the glucose deprivation-induced ROS accumulation and also the HO-1 expression. In conclusion, the Nrf2-mediated HO-1 upregulation upon glucose deprivation is mediated by ROS in HepG2 cells, and responsible for the adaptive survival response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app