Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Surface plasmon microcavity for resonant transmission through a slit in a gold film.

Optics Express 2008 June 24
We demonstrate the use of a compact surface plasmon (SP) microcavity formed in a 300 nm thick gold film to resonantly enhance the optical transmission through a subwavelength slit. Focussed ion beam milling is used to create 200 nm deep SP microcavities, with widths between 800 nm to 1300 nm, each with a 180 nm slit in its center. The experimentally-measured TM polarized optical transmission has a wavelength-dependent peak that has similarities with finite-difference time-domain calculations in terms of peak-position and enhancement factors of peak transmission. The calculations show, by observing the near-field distributions, the interaction between the SP microcavity standing waves and the slit to create enhanced transmission. The SP microcavity demonstrated here is easily fabricated and may be optimized for future applications in surface-enhanced Raman scattering, nonlinear optics and surface plasmon resonance sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app