Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Proteasome inhibition sensitizes non-small-cell lung cancer to gemcitabine-induced apoptosis.

BACKGROUND: My colleagues and I have previously shown that chemotherapy activates the antiapoptotic transcription factor nuclear factor (NF)-kappaB in non-small-cell lung cancer (NSCLC). We hypothesized that inhibition of NF-kappaB by using the proteasome inhibitor bortezomib (Velcade) would sensitize NSCLC to gemcitabine-induced apoptosis.

METHODS: Tumorigenic NSCLC cell lines (H157 and A549) were treated with nothing, gemcitabine, bortezomib, or both compounds. NF-kappaB activity was determined by nuclear p65 protein levels, electrophoretic mobility shift assays, and reverse transcription-polymerase chain reaction of the NF-kappaB-regulated genes interleukin-8, c-IAP2, and Bcl-xL. The p21 and p53 protein levels were determined in similarly treated cells. Cell-cycle dysregulation was assessed by fluorescence-activated cell sorting analysis. Cell death and apoptosis were quantified by clonogenic assays, caspase-3 activation, and DNA fragmentation. NSCLC A549 xenografts were generated and treated as noted previously. Tumor growth was assessed over a 4-week treatment period. Statistical analysis was performed with analysis of variance.

RESULTS: Gemcitabine enhanced nuclear p65 levels, NF-kappaB binding to DNA, and transcription of all NF-kappaB-regulated genes. Bortezomib inhibited each of these effects. Combined gemcitabine and bortezomib enhanced p21 and p53 expression and induced S-phase and G2/M cell-cycle arrests, respectively. Combined treatment killed 80% of the NSCLC cells and induced apoptosis, as determined by caspase-3 activation (p = 0.05) and DNA fragmentation (p = 0.02). NSCLC xenografts treated with combination therapy grew significantly slower than xenografts treated with gemcitabine alone (p = 0.02).

CONCLUSIONS: Bortezomib inhibits gemcitabine-induced activation of NF-kappaB and sensitizes NSCLC to death in vitro and in vivo. This combined treatment strategy warrants further investigation and may represent a reasonable treatment strategy for select patients with NSCLC given the current clinical availability of both drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app