COMPARATIVE STUDY
JOURNAL ARTICLE

Proteasome inhibition sensitizes non-small-cell lung cancer to gemcitabine-induced apoptosis

Chadrick E Denlinger, Brian K Rundall, Michael D Keller, David R Jones
Annals of Thoracic Surgery 2004, 78 (4): 1207-14; discussion 1207-14
15464472

BACKGROUND: My colleagues and I have previously shown that chemotherapy activates the antiapoptotic transcription factor nuclear factor (NF)-kappaB in non-small-cell lung cancer (NSCLC). We hypothesized that inhibition of NF-kappaB by using the proteasome inhibitor bortezomib (Velcade) would sensitize NSCLC to gemcitabine-induced apoptosis.

METHODS: Tumorigenic NSCLC cell lines (H157 and A549) were treated with nothing, gemcitabine, bortezomib, or both compounds. NF-kappaB activity was determined by nuclear p65 protein levels, electrophoretic mobility shift assays, and reverse transcription-polymerase chain reaction of the NF-kappaB-regulated genes interleukin-8, c-IAP2, and Bcl-xL. The p21 and p53 protein levels were determined in similarly treated cells. Cell-cycle dysregulation was assessed by fluorescence-activated cell sorting analysis. Cell death and apoptosis were quantified by clonogenic assays, caspase-3 activation, and DNA fragmentation. NSCLC A549 xenografts were generated and treated as noted previously. Tumor growth was assessed over a 4-week treatment period. Statistical analysis was performed with analysis of variance.

RESULTS: Gemcitabine enhanced nuclear p65 levels, NF-kappaB binding to DNA, and transcription of all NF-kappaB-regulated genes. Bortezomib inhibited each of these effects. Combined gemcitabine and bortezomib enhanced p21 and p53 expression and induced S-phase and G2/M cell-cycle arrests, respectively. Combined treatment killed 80% of the NSCLC cells and induced apoptosis, as determined by caspase-3 activation (p = 0.05) and DNA fragmentation (p = 0.02). NSCLC xenografts treated with combination therapy grew significantly slower than xenografts treated with gemcitabine alone (p = 0.02).

CONCLUSIONS: Bortezomib inhibits gemcitabine-induced activation of NF-kappaB and sensitizes NSCLC to death in vitro and in vivo. This combined treatment strategy warrants further investigation and may represent a reasonable treatment strategy for select patients with NSCLC given the current clinical availability of both drugs.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
15464472
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"