Add like
Add dislike
Add to saved papers

Investigation of oxygen transfer rates in full scale membrane bioreactors.

In membrane bioreactors (MBRs) for wastewater treatment the secondary clarifier is replaced by a membrane filtration. The advantage of this process is a complete removal of solids from the effluent and a small footprint due to possible high biomass concentrations (MLSS). As oxygen supply counts for more than 70% of total energy cost in municipal WWTPs the design of the aeration system is vital for efficient operation. In this respect the alpha-value is an important influencing factor. The alpha-value depends on the MLSS-concentration as shown in various publications and confirmed by own measurements in two full scale municipal MBRs with MLSS ranging from 7 and 17 kg/m3. Furthermore it must be taken into account that alpha-values are not static values; they vary with loading rates, surfactant concentrations, air flow rates, MLSS concentrations, etc. The average alpha-value at typical 12 kg/m3 MLSS for municipal MBRs is about 0.6 +/- 0.1. As submerged configured MBRs are equipped with an additional coarse bubble "crossflow" aeration system for fouling control, supplementary energy is consumed. Therefore MBRs need more energy compared to conventional treatment plants. Measurements of both aeration systems show that the fine bubble aeration system is more efficient by a factor of three concerning oxygen supply compared to the coarse bubble system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app